

Mac OS X
Kernel
Brett Halle
Manager,
Core OS Engineering

Application
Environments

Application
Environments

Core OS
(Darwin)
Core OS
(Darwin)

Blue
Box

Yellow/
Java BSD

POSIX

Mach 2.x
Drivers

DriverKit

Skt Layer
Atalk IP

File
System

Mac OS X Server

Application
Environments

Application
Environments

Core OSCore OS

Classi
c Carbon Cocoa BSD

POSIX

Mach 3.0

Common Services

Drivers
I/OKit

Skt Layer
Atalk IP

File
System

Core OS and Mac OS X

Application
Environments

Application
Environments

Core OSCore OS

POSIX
Skt Layer

Atalk

Carbon Cocoa

Common Services

BSD

Drivers
I/OKit

IP

Classi
c

File
System

Mach 3.0

Core OS—Mach

Mach
• The “foundation” of the OS
• Responsible for:

• Preemption / scheduling

• Memory protection / management

• Low level task communication

• NOT responsible for:
• I/O, networking, file systems,

ownership, application API’s

Mach
• A little history…
• Mac OS X Server: based on CMU’s Mach

2.x plus a handful of Mach 3.0 features
• Mac OS X: based on Mach 3.0

• Originally developed at CMU

• Significant work done at The Open
Group Research Institute

• Further work done at Apple (MkLinux)

Mach 2.x
• Typed IPC
• Monolithic architecture

• VM system (pager)

• BSD, I/O, etc.

• Limited or no SMP capability
• Real-time not a consideration

Mach 3.0
• Our version derived from The Open

Group Research Institute’s “MK 7.3”
• Better performance

• Kernel preemption

• Significantly improved VM system

• IPC and RPC enhancements
• For example, untyped IPC

• Better real-time support

Mach 3.0
• More modular architecture

• Based on components

• Scheduling framework
• Processor neutral
• MP enabled
• In-line kernel debugger

Mach Philosophy
• Simple, extensible communication kernel
• Object oriented

• Object reference:
communication channel

• Also unit of protection

• Synchronous and asynchronous IPC
• Client / Server

• Exceptions

Kernel Communication
• Port: communication channel

• Accessible only via send/receive
capability

• Finest granularity of protection

• Message: collection of data objects
• Mach 2.x: fully typed

• Mach 3.0: untyped data, typed
port capabilities

Kernel Resources
• Task: resource container

• Address space

• Port rights

• Thread: lightweight unit of execution
• Memory Object: unit of backing storage
• Hardware and management abstractions

• Host, devices, processors, components

• Default memory manager

Kernel Functions
• Task and Thread Management
• Virtual Memory Management
• Inter-task Communication
• Resource Management

Tasks
• Process = Task plus one or more Threads
• Task contains:

• Address space…may be sparse
• Portions shared via inheritance

or other means

• Collection of system resources
• References by ports

• Some number of threads

Threads
• Flow of control in task
• Has access to entire task
• Concurrent execution

• Parallel on MP hardware

• Limited state
• Registers plus a few other things

T
hr

ea
d

 1

T
hr

ea
d

 2

T
hr

ea
d

 n

Task 1Task 1 Task 2Task 2
T

hr
ea

d
 1

T
hr

ea
d

 2

T
hr

ea
d

 n

Tasks and Threads

Virtual Memory
• Protected address space for each task
• Flexibility in address space usage
• Controlled sharing between

address spaces
• Paging implementation outside

kernel (3.0)
• Copy-on-write and lazy evaluation

• IPC integration

Inter-Task
Communication

• Communication via ports
• Kernel protected objects

• Port capability = Right
• Can only be transferred in messages
• Port rights are not global

• RPC implementations
• Optimized IPC for RPC case
• Native RPC

T
hr

ea
d

 1

T
hr

ea
d

 2

T
hr

ea
d

 n

Task 1Task 1 Task 2Task 2
T

hr
ea

d
 1

T
hr

ea
d

 2

T
hr

ea
d

 n

MachMach

Inter-Process
Communication

Port Rights
• Single receive right

• All threads in task may receive

• Receive right can be moved

• Port sets
• Multiple send rights
• Send-once optimizes IPC for RPC case
• Mach 3.0 adds more port flavors

Port Usage
• Control of kernel resources

• Tasks

• Threads

• Exceptions
• Interposing (e.g., debugger support)

• Typed vs. untyped messages (2.x vs. 3.0)
• MIG

• Higher level abstractions recommended

Resource Management
• Memory

• Address space
• Backing store

• Adaptive backing store

• Processor(s)
• Access
• Scheduling

• Ports

Core OS and Mac OS X
Application

Environments
Application

Environments

Core OSCore OS

Classi
c Carbon Cocoa BSD

POSIX

Mach 3.0

Common Services

Drivers
I/OKit

Skt Layer
Atalk IP

File
System

Where To
Get More Info…

• Programming Under Mach
by Joseph Boykin, et al.

• Mach 2.x source: Darwin
• Mach 3.0 source

• MkLinux: “www.mklinux.apple.com”

• Darwin later this year

Q&A

Think different.™

